skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kong, Tai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Abstract Fe 3 + δ GeTe 2 (FGT) has proved to be an interesting van der Waals (vdW) ferromagnetic compound with a tunable Curie temperature ( T C ). However, the underlying mechanism for varying T C remains elusive. Here, we systematically investigate and compare low-temperature magnetic properties of single crystalline FGT samples that exhibit T C s ranging from 160 K to 205 K. Spin stiffness (D) and spin excitation gap (Δ) are extracted using Bloch’s theory for crystals with varying Fe content. Compared to Cr-based vdW ferromagnets, FGT compounds have higher spin stiffness values but lower spin wave excitation gaps. We discuss the implication of these relationships in Fe–Fe ion magnetic interactions in FGT unit cells. The itinerancy of magnetic electrons is measured and discussed under the Rhodes–Wohlfarth ratio (RWR) and the Takahashi theory. 
    more » « less
  3. Abstract Single crystals of U2Mn3Ge and U2Fe3Ge with a Kagome lattice structure were synthesized using a high-temperature self-flux crystal growth method. The physical properties of these crystals were characterized through measurements of resistivity, magnetism, and specific heat. U2Fe3Ge exhibits ferromagnetic ground state and anomalous Hall effect, and U2Mn3Ge demonstrates a complex magnetic structure. Both compounds exhibit large Sommerfeld coefficient, indicating coexistence of heavy Fermion behaviour with magnetism. Our results suggest that this U2TM3Ge (TM = Mn, Fe, Co) family is a promising platform to investigate the interplay of magnetism, Kondo physics and the Kagome lattice. 
    more » « less
  4. One-dimensional (1D) van der Waals materials have emerged as an intriguing playground to explore novel electronic and optical effects. We report on inorganic one-dimensional SbPS4 nanotube bundles obtained via mechanical exfoliation from bulk crystals. The ability to mechanically exfoliate SbPS4 nanobundles offers the possibility of applying modern 2D material fabrication techniques to create mixed-dimensional van der Waals heterostructures. We find that SbPS4 can readily be exfoliated to yield long (>10 μm) nanobundles with thicknesses that range from 1.3 to 200 nm. We investigated the optical response of semiconducting SbPS4 nanobundles and discovered that upon excitation with blue light, they emit bright and ultra-broadband red light with a quantum yield similar to that of hBN-encapsulated MoSe2. We discovered that the ultra-broadband red light emission is a result of a large ∼1 eV exciton binding energy and a ∼200 meV exciton self-trapping energy, unprecedented in previous material studies. Due to the bright and ultra-broadband light emission, we believe that this class of inorganic 1D van der Waals semiconductors has numerous potential applications, including on-chip tunable nanolasers, and applications that require ultraviolet to visible light conversion, such as lighting and sensing. Overall, our findings open avenues for harnessing the unique characteristics of these nanomaterials, advancing both fundamental research and practical optoelectronic applications.< 
    more » « less
  5. Abstract The interaction between strong correlation and Berry curvature is an open territory of in the field of quantum materials. Here we report large anomalous Hall conductivity in a Kondo lattice ferromagnet USbTe which is dominated by intrinsic Berry curvature at low temperatures. However, the Berry curvature induced anomalous Hall effect does not follow the scaling relation derived from Fermi liquid theory. The onset of the Berry curvature contribution coincides with the Kondo coherent temperature. Combined with ARPES measurement and DMFT calculations, this strongly indicates that Berry curvature is hosted by the flat bands induced by Kondo hybridization at the Fermi level. Our results demonstrate that the Kondo coherence of the flat bands has a dramatic influence on the low temperature physical properties associated with the Berry curvature, calling for new theories of scaling relations of anomalous Hall effect to account for the interaction between strong correlation and Berry curvature. 
    more » « less
  6. A new compound, Ba 3 Ga 2 O 5 Cl 2 , isostructural with Ba 3 Fe 2 O 5 Cl 2 , was synthesized by solid-state reaction in air. Through single-crystal and powder X-ray diffraction analysis, the crystal structure was determined to be cubic with chiral space group I 2 1 3 and unit-cell parameter a  = 9.928 (1) Å. The Ga 3+ ions in Ba 3 Ga 2 O 5 Cl 2 are coordinated by O atoms and form GaO 4 tetrahedra. Ten neighboring GaO 4 tetrahedra are further bridged through corner sharing and rotation along the body diagonal, producing the chiral structure. Magnetization measurements indicate temperature-independent diamagnetic behavior, which is qualitatively consistent with core diamagnetism from all the constituent elements. 
    more » « less
  7. The synthesis, crystal structure determination, magnetic properties and bonding interaction analysis of a novel 3 d transition-metal complex, [CrBr 2 (NCCH 3 ) 4 ](Br 3 ), are reported. Single-crystal X-ray diffraction results show that [CrBr 2 (NCCH 3 ) 4 ](Br 3 ) crystallizes in space group C 2/ m (No. 12) with a symmetric tribromide anion and the powder X-ray diffraction results show the high purity of the material specimen. X-ray photoelectron studies with a combination of magnetic measurements demonstrate that Cr adopts the 3+ oxidation state. Based on the Curie–Weiss analysis of magnetic susceptibility data, the Néel temperature is found to be around 2.2 K and the effective moment (μ eff ) of Cr 3+ in [CrBr 2 (NCCH 3 ) 4 ](Br 3 ) is ∼3.8 µ B , which agrees with the theoretical value for Cr 3+ . The direct current magnetic susceptibility of the molecule shows a broad maximum at ∼2.3 K, which is consistent with the theoretical Néel temperature. The maximum temperature, however, shows no clear frequency dependence. Combined with the observed upturn in heat capacity below 2.3 K and the corresponding field dependence, it is speculated that the low-temperature magnetic feature of a broad transition in [CrBr 2 (NCCH 3 ) 4 ](Br 3 ) could originate from a crossover from high spin to low spin for the split d orbital level low-lying states rather than a short-range ordering solely; this is also supported by the molecular orbital diagram obtained from theoretical calculations. 
    more » « less